Nilai lim_(x→1)⁡ tan⁡(1-x)/(x^3-1)=⋯

www.jagostat.com

www.jagostat.com

Website Belajar Matematika & Statistika

Website Belajar Matematika & Statistika

Bahas Soal Matematika   »   Limit   ›  

Nilai \( \displaystyle \lim_{x\to 1} \ \frac{\tan(1-x)}{x^3-1} = \cdots \)

  1. \( \frac{1}{3} \)
  2. \( -\frac{1}{3} \)
  3. \( 1 \)
  4. \( -1 \)
  5. \( \frac{1}{2} \)

Pembahasan:

\begin{aligned} \lim_{x\to 1} \ \frac{\tan(1-x)}{x^3-1} &= \lim_{x\to 1} \ \frac{\tan(1-x)}{(x-1)(x^2+x+1)} \\[8pt] &= \lim_{x\to 1} \ \frac{\tan(1-x)}{-(1-x)(x^2+x+1)} \\[8pt] &= \lim_{x\to 1} \ \frac{\tan(1-x)}{(1-x)} \cdot \lim_{x\to 1} \ \frac{1}{-(x^2+x+1)} \\[8pt] &= 1 \cdot \frac{1}{-(1^2 + 1 + 1)} = - \frac{1}{3} \end{aligned}

Jawaban B.